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pug!
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communicating and 
sharing in the real world
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30+ million users in less 
than 2 years
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at its heart, Postgres-
driven
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a glimpse at how a 
startup with a small eng 
team scaled with PG
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a brief tangent
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the beginning
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Text
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2 product guys
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no real back-end 
experience
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(you should have seen 
my first time finding my 

way around psql)

Monday, April 23, 12



analytics & python @ 
meebo
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CouchDB
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CrimeDesk SF
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early mix: PG, Redis, 
Memcached
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...but were hosted on a 
single machine 

somewhere in LA
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less powerful than my 
MacBook Pro
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okay, we launched.
now what?
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25k signups in the first 
day
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everything is on fire!
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best & worst day of our 
lives so far
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load was through the 
roof
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friday rolls around
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not slowing down
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let’s move to EC2.
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PG upgrade to 9.0
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scaling = replacing all 
components of a car 

while driving it at 
100mph
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this is the story of how 
our usage of PG has 

evolved
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Phase 1: All ORM, all 
the time
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why pg? at first, postgis.

Monday, April 23, 12



./manage.py syncdb
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ORM made it too easy to 
not really think through 

primary keys
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pretty good for getting off 
the ground
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Media.objects.get(pk = 4)
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first version of our feed 
(pre-launch)
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friends = 
Relationships.objects.filter(source_use
r = user)

recent_photos = 
Media.objects.filter(user_id__in = 
friends).order_by(‘-pk’)[0:20]
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main feed at launch
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Redis:
// user 33 posts
friends = SMEMBERS followers:33
for user in friends: 
  LPUSH feed:<user_id> <media_id>

// for reading
LRANGE feed:4 0 20
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feed:4
feed:4
feed:4
feed:4


canonical data: PG
feeds/lists/sets: Redis

object cache: memcache
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post-launch
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moved db to its own 
machine
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at time, largest table: 
photo metadata
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ran master-slave from the 
beginning, with 

streaming replication
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backups: stop the 
replica, xfs_freeze drives, 
and take EBS snapshot
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AWS tradeoff
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3 early problems we hit 
with PG
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1 oh, that setting was 
the problem?

Monday, April 23, 12



work_mem
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shared_buffers
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cost_delay
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2 Django-specific: 
<idle in transaction>
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3 connection pooling

Monday, April 23, 12



(we use PGBouncer)
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somewhere in this crazy 
couple of months, 

Christophe to the rescue!
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photos kept growing and 
growing...
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...and only 68GB of 
RAM on biggest 
machine in EC2
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so what now?
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Phase 2: Vertical 
Partitioning
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django db routers make 
it pretty easy
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def db_for_read(self, model):
  if app_label == 'photos':
    return 'photodb'

Monday, April 23, 12



...once you untangle all 
your foreign key 

relationships
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(all of those user/user_id 
interchangeable calls bite 

you now)

Monday, April 23, 12



plenty of time spent in 
PGFouine
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read slaves (using 
streaming replicas) where 

we need to reduce 
contention
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a few months later...
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photosdb > 60GB
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precipitated by being on 
cloud hardware, but likely 
to have hit limit eventually 

either way
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what now?
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horizontal partitioning!
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Phase 3: sharding
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“surely we’ll have hired 
someone experienced 
before we actually need 

to shard”
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...never true about 
scaling
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1 choosing a method
2 adapting the application

3 expanding capacity
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evaluated solutions
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at the time, none were 
up to task of being our 

primary DB
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NoSQL alternatives
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Skype’s sharding proxy
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Range/date-based 
partitioning
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did in Postgres itself
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requirements
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1 low operational & code 
complexity
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2 easy expanding of 
capacity
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3 low performance 
impact on application
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schema-based logical 
sharding

Monday, April 23, 12



many many many 
(thousands) of logical 

shards
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that map to fewer 
physical ones
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// 8 logical shards on 2 machines

user_id % 8 = logical shard

logical shards -> physical shard map

{
  0: A, 1: A,
  2: A, 3: A,
  4: B, 5: B,
  6: B, 7: B
}
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// 8 logical shards on 2 4 machines

user_id % 8 = logical shard

logical shards -> physical shard map

{
  0: A, 1: A,
  2: C, 3: C,
  4: B, 5: B,
  6: D, 7: D
}
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¡schemas!
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all that ‘public’ stuff I’d 
been glossing over for 2 

years
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- database:
  - schema: 
    - table:
      - columns
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spun up set of machines
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using fabric, created 
thousands of schemas
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machineA:
  shard0
    photos_by_user
  shard1
    photos_by_user
  shard2
    photos_by_user
  shard3
    photos_by_user

machineB:
  shard4
    photos_by_user
  shard5
    photos_by_user
  shard6
    photos_by_user
  shard7
    photos_by_user
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(fabric or similar parallel 
task executor is 

essential)
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application-side logic
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SHARD_TO_DB = {}

SHARD_TO_DB[0] = 0
SHARD_TO_DB[1] = 0
SHARD_TO_DB[2] = 0
SHARD_TO_DB[3] = 0
SHARD_TO_DB[4] = 1
SHARD_TO_DB[5] = 1
SHARD_TO_DB[6] = 1
SHARD_TO_DB[7] = 1
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instead of Django ORM, 
wrote really simple db 

abstraction layer 
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select/update/insert/
delete
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select(fields, table_name, 
shard_key, where_statement, 
where_parameters)
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select(fields, table_name, 
shard_key, where_statement, 
where_parameters)

...
shard_key % num_logical_shards = 
shard_id
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in most cases, user_id 
for us
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custom Django test 
runner to create/tear-
down sharded DBs

Monday, April 23, 12



most queries involve 
visiting handful of shards 

over one or two 
machines
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if mapping across shards 
on single DB, UNION 

ALL to aggregate
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clients to library pass in:
((shard_key, id), 

(shard_key,id)) etc

Monday, April 23, 12



library maps sub-selects 
to each shard, and each 

machine
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parallel execution! (per-
machine, at least)
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->  Append  (cost=0.00..973.72 rows=100 width=12) (actual 
time=0.290..160.035 rows=30 loops=1)
    ->  Limit  (cost=0.00..806.24 rows=30 width=12) (actual 
time=0.288..159.913 rows=14 loops=1)
        ->  Index Scan Backward using index on table  
(cost=0.00..18651.04 rows=694 width=12) (actual time=0.286..159.885 
rows=14 loops=1)
    ->  Limit  (cost=0.00..71.15 rows=30 width=12) (actual 
time=0.015..0.018 rows=1 loops=1)
        ->  Index Scan using index on table  (cost=0.00..101.99 rows=43 
width=12) (actual time=0.013..0.014 rows=1 loops=1)
    (etc)
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eventually, would be nice 
to parallelize across 

machines

Monday, April 23, 12



next challenge: unique 
IDs
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requirements
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1 should be time 
sortable without requiring 

a lookup
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2 should be 64-bit
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3 low operational 
complexity
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surveyed the options
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ticket servers?
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UUID?
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twitter snowflake?
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application-level IDs ala 
Mongo?
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hey, the db is already 
pretty good about 

incrementing sequences
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[ 41 bits of time in millis ]
[ 13 bits for shard ID ]
[ 10 bits sequence ID ]
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[ 41 bits of time in millis ]
[ 13 bits for shard ID ]
[ 10 bits sequence ID ]
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[ 41 bits of time in millis ]
[ 13 bits for shard ID ]
[ 10 bits sequence ID ]
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[ 41 bits of time in millis ]
[ 13 bits for shard ID ]
[ 10 bits sequence ID ]
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CREATE OR REPLACE FUNCTION insta5.next_id(OUT result bigint) AS $$
DECLARE
    our_epoch bigint := 1314220021721;
    seq_id bigint;
    now_millis bigint;
    shard_id int := 5;
BEGIN
    SELECT nextval('insta5.table_id_seq') % 1024 INTO seq_id;

    SELECT FLOOR(EXTRACT(EPOCH FROM clock_timestamp()) * 1000) INTO 
now_millis;
    result := (now_millis - our_epoch) << 23;
    result := result | (shard_id << 10);
    result := result | (seq_id);
END;
$$ LANGUAGE PLPGSQL;
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# pulling shard ID from ID:

shard_id = id ^ ((id >> 23) << 23)
timestamp = EPOCH + id >> 23
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pros: guaranteed unique 
in 64-bits, not much of a 

CPU overhead
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cons: large IDs from the 
get-go
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hundreds of millions of 
IDs generated with this 

scheme, no issues
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well, what about “re-
sharding”
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first recourse: pg_reorg
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rewrites tables in index 
order
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only requires brief locks 
for atomic table renames
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20+GB savings on 
some of our dbs
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especially useful on EC2
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but sometimes you just 
have to reshard
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streaming replication to 
the rescue
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(btw, repmgr is 
awesome)
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repmgr standby clone <master>
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machineA:
  shard0
    photos_by_user
  shard1
    photos_by_user
  shard2
    photos_by_user
  shard3
    photos_by_user

machineA’:
  shard0
    photos_by_user
  shard1
    photos_by_user
  shard2
    photos_by_user
  shard3
    photos_by_user

Monday, April 23, 12



machineA:
  shard0
    photos_by_user
  shard1
    photos_by_user
  shard2
    photos_by_user
  shard3
    photos_by_user

machineC:
  shard0
    photos_by_user
  shard1
    photos_by_user
  shard2
    photos_by_user
  shard3
    photos_by_user
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PGBouncer abstracts 
moving DBs from the 

app logic
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can do this as long as 
you have more logical 
shards than physical 

ones
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beauty of schemas is 
that they are physically 

different files
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(no IO hit when deleting, 
no ‘swiss cheese’)
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downside: requires ~30 
seconds of maintenance 
to roll out new schema 

mapping
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(could be solved by 
having concept of “read-

only” mode for some 
DBs)
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not great for range-scans 
that would span across 

shards
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latest project: follow 
graph
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v1: simple DB table
(source_id, target_id, 

status)
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who do I follow?
who follows me?

do I follow X?
does X follow me?
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DB was busy, so we 
started storing parallel 

version in Redis
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follow_all(300 item list)
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inconsistency
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extra logic
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so much extra logic
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exposing your support 
team to the idea of 
cache invalidation
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redesign took a page 
from twitter’s book
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PG can handle tens of 
thousands of requests, 
very light memcached 

caching
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next steps
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isolating services to 
minimize open conns
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investigate physical 
hardware / etc to reduce 

need to re-shard
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Wrap up
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you don’t need to give 
up PG’s durability & 
features to shard
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continue to let the DB do 
what the DB is great at
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“don’t shard until you 
have to”
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(but don’t over-estimate 
how hard it will be, either)
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scaled within constraints 
of the cloud
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PG success story
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(we’re really excited 
about 9.2)
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thanks! any qs?
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