
Sharding @ Instagram
SFPUG April 2012

Mike Krieger
Instagram

Monday, April 23, 12

me

- Co-founder, Instagram

- Previously: UX & Front-end
@ Meebo

- Stanford HCI BS/MS

- @mikeyk on everything

Monday, April 23, 12

pug!

Monday, April 23, 12

communicating and
sharing in the real world

Monday, April 23, 12

Monday, April 23, 12

Monday, April 23, 12

Monday, April 23, 12

30+ million users in less
than 2 years

Monday, April 23, 12

at its heart, Postgres-
driven

Monday, April 23, 12

a glimpse at how a
startup with a small eng
team scaled with PG

Monday, April 23, 12

a brief tangent

Monday, April 23, 12

the beginning

Monday, April 23, 12

Text

Monday, April 23, 12

2 product guys

Monday, April 23, 12

no real back-end
experience

Monday, April 23, 12

(you should have seen
my first time finding my

way around psql)

Monday, April 23, 12

analytics & python @
meebo

Monday, April 23, 12

CouchDB

Monday, April 23, 12

CrimeDesk SF

Monday, April 23, 12

Monday, April 23, 12

early mix: PG, Redis,
Memcached

Monday, April 23, 12

...but were hosted on a
single machine

somewhere in LA

Monday, April 23, 12

Monday, April 23, 12

less powerful than my
MacBook Pro

Monday, April 23, 12

okay, we launched.
now what?

Monday, April 23, 12

25k signups in the first
day

Monday, April 23, 12

everything is on fire!

Monday, April 23, 12

best & worst day of our
lives so far

Monday, April 23, 12

load was through the
roof

Monday, April 23, 12

friday rolls around

Monday, April 23, 12

not slowing down

Monday, April 23, 12

let’s move to EC2.

Monday, April 23, 12

Monday, April 23, 12

PG upgrade to 9.0

Monday, April 23, 12

Monday, April 23, 12

scaling = replacing all
components of a car

while driving it at
100mph

Monday, April 23, 12

this is the story of how
our usage of PG has

evolved

Monday, April 23, 12

Phase 1: All ORM, all
the time

Monday, April 23, 12

why pg? at first, postgis.

Monday, April 23, 12

./manage.py syncdb

Monday, April 23, 12

ORM made it too easy to
not really think through

primary keys

Monday, April 23, 12

pretty good for getting off
the ground

Monday, April 23, 12

Media.objects.get(pk = 4)

Monday, April 23, 12

first version of our feed
(pre-launch)

Monday, April 23, 12

friends =
Relationships.objects.filter(source_use
r = user)

recent_photos =
Media.objects.filter(user_id__in =
friends).order_by(‘-pk’)[0:20]

Monday, April 23, 12

main feed at launch

Monday, April 23, 12

Redis:
// user 33 posts
friends = SMEMBERS followers:33
for user in friends:
 LPUSH feed:<user_id> <media_id>

// for reading
LRANGE feed:4 0 20

Monday, April 23, 12

feed:4
feed:4
feed:4
feed:4

canonical data: PG
feeds/lists/sets: Redis

object cache: memcache

Monday, April 23, 12

post-launch

Monday, April 23, 12

moved db to its own
machine

Monday, April 23, 12

at time, largest table:
photo metadata

Monday, April 23, 12

ran master-slave from the
beginning, with

streaming replication

Monday, April 23, 12

backups: stop the
replica, xfs_freeze drives,
and take EBS snapshot

Monday, April 23, 12

AWS tradeoff

Monday, April 23, 12

3 early problems we hit
with PG

Monday, April 23, 12

1 oh, that setting was
the problem?

Monday, April 23, 12

work_mem

Monday, April 23, 12

shared_buffers

Monday, April 23, 12

cost_delay

Monday, April 23, 12

2 Django-specific:
<idle in transaction>

Monday, April 23, 12

3 connection pooling

Monday, April 23, 12

(we use PGBouncer)

Monday, April 23, 12

somewhere in this crazy
couple of months,

Christophe to the rescue!

Monday, April 23, 12

photos kept growing and
growing...

Monday, April 23, 12

...and only 68GB of
RAM on biggest
machine in EC2

Monday, April 23, 12

so what now?

Monday, April 23, 12

Phase 2: Vertical
Partitioning

Monday, April 23, 12

django db routers make
it pretty easy

Monday, April 23, 12

def db_for_read(self, model):
 if app_label == 'photos':
 return 'photodb'

Monday, April 23, 12

...once you untangle all
your foreign key

relationships

Monday, April 23, 12

(all of those user/user_id
interchangeable calls bite

you now)

Monday, April 23, 12

plenty of time spent in
PGFouine

Monday, April 23, 12

read slaves (using
streaming replicas) where

we need to reduce
contention

Monday, April 23, 12

a few months later...

Monday, April 23, 12

photosdb > 60GB

Monday, April 23, 12

precipitated by being on
cloud hardware, but likely
to have hit limit eventually

either way

Monday, April 23, 12

what now?

Monday, April 23, 12

horizontal partitioning!

Monday, April 23, 12

Phase 3: sharding

Monday, April 23, 12

“surely we’ll have hired
someone experienced
before we actually need

to shard”

Monday, April 23, 12

...never true about
scaling

Monday, April 23, 12

1 choosing a method
2 adapting the application

3 expanding capacity

Monday, April 23, 12

evaluated solutions

Monday, April 23, 12

at the time, none were
up to task of being our

primary DB

Monday, April 23, 12

NoSQL alternatives

Monday, April 23, 12

Skype’s sharding proxy

Monday, April 23, 12

Range/date-based
partitioning

Monday, April 23, 12

did in Postgres itself

Monday, April 23, 12

requirements

Monday, April 23, 12

1 low operational & code
complexity

Monday, April 23, 12

2 easy expanding of
capacity

Monday, April 23, 12

3 low performance
impact on application

Monday, April 23, 12

schema-based logical
sharding

Monday, April 23, 12

many many many
(thousands) of logical

shards

Monday, April 23, 12

that map to fewer
physical ones

Monday, April 23, 12

// 8 logical shards on 2 machines

user_id % 8 = logical shard

logical shards -> physical shard map

{
 0: A, 1: A,
 2: A, 3: A,
 4: B, 5: B,
 6: B, 7: B
}

Monday, April 23, 12

// 8 logical shards on 2 4 machines

user_id % 8 = logical shard

logical shards -> physical shard map

{
 0: A, 1: A,
 2: C, 3: C,
 4: B, 5: B,
 6: D, 7: D
}

Monday, April 23, 12

¡schemas!

Monday, April 23, 12

all that ‘public’ stuff I’d
been glossing over for 2

years

Monday, April 23, 12

- database:
 - schema:
 - table:
 - columns

Monday, April 23, 12

spun up set of machines

Monday, April 23, 12

using fabric, created
thousands of schemas

Monday, April 23, 12

machineA:
 shard0
 photos_by_user
 shard1
 photos_by_user
 shard2
 photos_by_user
 shard3
 photos_by_user

machineB:
 shard4
 photos_by_user
 shard5
 photos_by_user
 shard6
 photos_by_user
 shard7
 photos_by_user

Monday, April 23, 12

(fabric or similar parallel
task executor is

essential)

Monday, April 23, 12

application-side logic

Monday, April 23, 12

SHARD_TO_DB = {}

SHARD_TO_DB[0] = 0
SHARD_TO_DB[1] = 0
SHARD_TO_DB[2] = 0
SHARD_TO_DB[3] = 0
SHARD_TO_DB[4] = 1
SHARD_TO_DB[5] = 1
SHARD_TO_DB[6] = 1
SHARD_TO_DB[7] = 1

Monday, April 23, 12

instead of Django ORM,
wrote really simple db

abstraction layer

Monday, April 23, 12

select/update/insert/
delete

Monday, April 23, 12

select(fields, table_name,
shard_key, where_statement,
where_parameters)

Monday, April 23, 12

select(fields, table_name,
shard_key, where_statement,
where_parameters)

...
shard_key % num_logical_shards =
shard_id

Monday, April 23, 12

in most cases, user_id
for us

Monday, April 23, 12

custom Django test
runner to create/tear-
down sharded DBs

Monday, April 23, 12

most queries involve
visiting handful of shards

over one or two
machines

Monday, April 23, 12

if mapping across shards
on single DB, UNION

ALL to aggregate

Monday, April 23, 12

clients to library pass in:
((shard_key, id),

(shard_key,id)) etc

Monday, April 23, 12

library maps sub-selects
to each shard, and each

machine

Monday, April 23, 12

parallel execution! (per-
machine, at least)

Monday, April 23, 12

-> Append (cost=0.00..973.72 rows=100 width=12) (actual
time=0.290..160.035 rows=30 loops=1)
 -> Limit (cost=0.00..806.24 rows=30 width=12) (actual
time=0.288..159.913 rows=14 loops=1)
 -> Index Scan Backward using index on table
(cost=0.00..18651.04 rows=694 width=12) (actual time=0.286..159.885
rows=14 loops=1)
 -> Limit (cost=0.00..71.15 rows=30 width=12) (actual
time=0.015..0.018 rows=1 loops=1)
 -> Index Scan using index on table (cost=0.00..101.99 rows=43
width=12) (actual time=0.013..0.014 rows=1 loops=1)
 (etc)

Monday, April 23, 12

eventually, would be nice
to parallelize across

machines

Monday, April 23, 12

next challenge: unique
IDs

Monday, April 23, 12

requirements

Monday, April 23, 12

1 should be time
sortable without requiring

a lookup

Monday, April 23, 12

2 should be 64-bit

Monday, April 23, 12

3 low operational
complexity

Monday, April 23, 12

surveyed the options

Monday, April 23, 12

ticket servers?

Monday, April 23, 12

UUID?

Monday, April 23, 12

twitter snowflake?

Monday, April 23, 12

application-level IDs ala
Mongo?

Monday, April 23, 12

hey, the db is already
pretty good about

incrementing sequences

Monday, April 23, 12

[41 bits of time in millis]
[13 bits for shard ID]
[10 bits sequence ID]

Monday, April 23, 12

[41 bits of time in millis]
[13 bits for shard ID]
[10 bits sequence ID]

Monday, April 23, 12

[41 bits of time in millis]
[13 bits for shard ID]
[10 bits sequence ID]

Monday, April 23, 12

[41 bits of time in millis]
[13 bits for shard ID]
[10 bits sequence ID]

Monday, April 23, 12

CREATE OR REPLACE FUNCTION insta5.next_id(OUT result bigint) AS $$
DECLARE
 our_epoch bigint := 1314220021721;
 seq_id bigint;
 now_millis bigint;
 shard_id int := 5;
BEGIN
 SELECT nextval('insta5.table_id_seq') % 1024 INTO seq_id;

 SELECT FLOOR(EXTRACT(EPOCH FROM clock_timestamp()) * 1000) INTO
now_millis;
 result := (now_millis - our_epoch) << 23;
 result := result | (shard_id << 10);
 result := result | (seq_id);
END;
$$ LANGUAGE PLPGSQL;

Monday, April 23, 12

pulling shard ID from ID:

shard_id = id ^ ((id >> 23) << 23)
timestamp = EPOCH + id >> 23

Monday, April 23, 12

pros: guaranteed unique
in 64-bits, not much of a

CPU overhead

Monday, April 23, 12

cons: large IDs from the
get-go

Monday, April 23, 12

hundreds of millions of
IDs generated with this

scheme, no issues

Monday, April 23, 12

well, what about “re-
sharding”

Monday, April 23, 12

first recourse: pg_reorg

Monday, April 23, 12

rewrites tables in index
order

Monday, April 23, 12

only requires brief locks
for atomic table renames

Monday, April 23, 12

20+GB savings on
some of our dbs

Monday, April 23, 12

Monday, April 23, 12

especially useful on EC2

Monday, April 23, 12

but sometimes you just
have to reshard

Monday, April 23, 12

streaming replication to
the rescue

Monday, April 23, 12

(btw, repmgr is
awesome)

Monday, April 23, 12

repmgr standby clone <master>

Monday, April 23, 12

machineA:
 shard0
 photos_by_user
 shard1
 photos_by_user
 shard2
 photos_by_user
 shard3
 photos_by_user

machineA’:
 shard0
 photos_by_user
 shard1
 photos_by_user
 shard2
 photos_by_user
 shard3
 photos_by_user

Monday, April 23, 12

machineA:
 shard0
 photos_by_user
 shard1
 photos_by_user
 shard2
 photos_by_user
 shard3
 photos_by_user

machineC:
 shard0
 photos_by_user
 shard1
 photos_by_user
 shard2
 photos_by_user
 shard3
 photos_by_user

Monday, April 23, 12

PGBouncer abstracts
moving DBs from the

app logic

Monday, April 23, 12

can do this as long as
you have more logical
shards than physical

ones

Monday, April 23, 12

beauty of schemas is
that they are physically

different files

Monday, April 23, 12

(no IO hit when deleting,
no ‘swiss cheese’)

Monday, April 23, 12

downside: requires ~30
seconds of maintenance
to roll out new schema

mapping

Monday, April 23, 12

(could be solved by
having concept of “read-

only” mode for some
DBs)

Monday, April 23, 12

not great for range-scans
that would span across

shards

Monday, April 23, 12

latest project: follow
graph

Monday, April 23, 12

v1: simple DB table
(source_id, target_id,

status)

Monday, April 23, 12

who do I follow?
who follows me?

do I follow X?
does X follow me?

Monday, April 23, 12

DB was busy, so we
started storing parallel

version in Redis

Monday, April 23, 12

follow_all(300 item list)

Monday, April 23, 12

inconsistency

Monday, April 23, 12

extra logic

Monday, April 23, 12

so much extra logic

Monday, April 23, 12

exposing your support
team to the idea of
cache invalidation

Monday, April 23, 12

Monday, April 23, 12

redesign took a page
from twitter’s book

Monday, April 23, 12

PG can handle tens of
thousands of requests,
very light memcached

caching

Monday, April 23, 12

next steps

Monday, April 23, 12

isolating services to
minimize open conns

Monday, April 23, 12

investigate physical
hardware / etc to reduce

need to re-shard

Monday, April 23, 12

Wrap up

Monday, April 23, 12

you don’t need to give
up PG’s durability &
features to shard

Monday, April 23, 12

continue to let the DB do
what the DB is great at

Monday, April 23, 12

“don’t shard until you
have to”

Monday, April 23, 12

(but don’t over-estimate
how hard it will be, either)

Monday, April 23, 12

scaled within constraints
of the cloud

Monday, April 23, 12

PG success story

Monday, April 23, 12

(we’re really excited
about 9.2)

Monday, April 23, 12

thanks! any qs?

Monday, April 23, 12

